A Representational State Transfer (REST) service allows querying all metadata and data products from the Tropospheric Ozone Assessment Report (TOAR) database of surface ozone observations.
This documentation describes the URL architecture and query options of the TOAR REST interface. For general information on REST, please consult other resources.
https://toar-data-testing.fz-juelich.de/api/v2
Response: Description and documentation of available REST services (this document)
The following information services are available and described individually below. Each service is invoked by appending its name and possible query arguments to the base URL.
ontology: query the used ontology of the database
controlled_vocabulary: query the controlled vocabulary and their description from the database
variables: query variables and their metadata from the database
stationmeta: query station ids, station names, and station location from the database
timeseries: query the data series id and specific metadata of a series from the database
search: query that combines the above services for stationmeta and timeseries
data: get data from one timeseries
geopeas_urls: show how we use the geopeas services to enriche our stations metadata
database_statistics: show database statistics (number of users, stations, timeseries, data records
In order to control the database queries and hence the response of the TOAR REST service, you can add arguments to the service URL. These arguments must adhere to the format argumentname=value. The first argument is prepended by a ?character, all other arguments are separated by & characters.
https://toar-data-testing.fz-juelich.de/api/v2/ontology[?QUERY-OPTIONS]
where QUERY-OPTIONS are:
format =
Response: By default, the query will return the ontology in xml format.
Example: https://toar-data-testing.fz-juelich.de/api/v2/ontology?format=xml
https://toar-data-testing.fz-juelich.de/api/v2/controlled_vocabulary/[name]
If no name is given, the complete controlled vocabulary is returned.
Valid names are:
Role Code
Role Status
Kind Of Annotation
Kind Of Organization
Sampling Frequency
Aggregation Type
Data Origin Type
Data Origin
Climatic Zone 2019
Country Code
Timezone
Station Coordinate Validity
Station Type
Station Type Of Area
Station TOAR Category
Station HTAP Region
Station Landcover Type
Station ECO Region Type
Result Type
Data Flag
Type Of Change
Example: https://toar-data-testing.fz-juelich.de/api/v2/controlled_vocabulary/Station Type
Result:
[[0,”Unknown”,”unknown”],[1,”Background”,”background”],[2,”Traffic”,”traffic”],[3,”Industrial”,”industrial”]]
https://toar-data-testing.fz-juelich.de/api/v2/variables/[name][?QUERY-OPTIONS]
or
https://toar-data-testing.fz-juelich.de/api/v2/variables/id/[id][?QUERY-OPTIONS]
where QUERY-OPTIONS are:
limit= <integer: count> (default: 10)
offset= <integer: number of elements to be skipped> (default: 0)
To get a list of all available variables use limit=None.
Response: Each query result consists of all fields of station metadata.
If no name is given, 10 variables will be returned (ordered by their internal id).
The second query format using a variable id, works only with a given id.
Example: https://toar-data-testing.fz-juelich.de/api/v2/variables/o3
Result:
{“name”:”o3”,”longname”:”ozone”,”displayname”:”Ozone”,”cf_standardname”:”mole_fraction_of_ozone_in_air”,”units”:”nmol mol-1”,”chemical_formula”:”O3”,”id”:5}
https://toar-data-testing.fz-juelich.de/api/v2/stationmeta/[name][?QUERY-OPTIONS]
or
https://toar-data-testing.fz-juelich.de/api/v2/stationmeta/id/[id][?QUERY-OPTIONS]
where QUERY-OPTIONS are:
Name | Type | Description |
---|---|---|
limit | integer | count (default: 10) |
offset | integer | number of elements to be skipped (default: 0) |
fields | list of strings | only return the listed fields of each station's record f.ex. fields=name,coordinates only returns the station name and its geographic coordinates |
id | integer | internally (in the database) used id of the station |
codes | [ string ] | list of station's codes |
name | string | Station name for use in TOAR; normally equal to data provider’s name basic similarity check, if given argument (case insensitive) is contained in station‘s name |
bounding_box | list of four numbers | The bounding_box (min_lat, min_lon, max_lat, max_lon in degrees_north/degrees_east) define a geographical rectangle |
altitude_range | list of two numbers | The given numbers define an altitude range (in m) |
coordinate_validation_status | string | Flag indicating whether the location of a station has been verified (see controlled vocabulary: Coordinate Validity) |
country | string | The country, where the station resides, or which operates the station (e.g. in Antarctica) (see controlled vocabulary: Country Code) |
state | string | The state or province, where the station resides |
type | string | Type of station (see controlled vocabulary: Station Type) |
type_of_area | string | Type of station area (see controlled vocabulary: Station Type Of Area) |
timezone | string | Station timezone (see controlled vocabulary: Timezone) |
toar1_category | string | The station classification for the Tropsopheric Ozone Assessment Report based on the station proxy data that are stored in the TOAR database (see controlled vocabulary: Station TOAR Category) |
station_id | integer | internal station_id to which these global data belong |
climatic_zone_year2016 | string | value for the year 2016 of the following data: units: - data_source: University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D. (2017): CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2015). Centre for Environmental Data Analysis, 25 August 2017. doi:10.5285/edf8febfdaad48abb2cbaf7d7e846a86. http://dx.doi.org/10.5285/edf8febfdaad48abb2cbaf7d7e846a86 citation: University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D. (2017): CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2015). Centre for Environmental Data Analysis, 25 August 2017. doi:10.5285/edf8febfdaad48abb2cbaf7d7e846a86. http://dx.doi.org/10.5285/edf8febfdaad48abb2cbaf7d7e846a86 (see controlled vocabulary: Climatic Zone 2019) |
mean_srtm_alt_90m_year1994 | number | mean value within a radius of 90 m around station location of the following data of the year 1994: units: m data_source: NASA Shuttle Radar Topographic Mission (SRTM) citation: Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org) |
mean_srtm_alt_1km_year1994 | number | mean value within a radius of 1 km around station location of the following data of the year 1994: units: m data_source: NASA Shuttle Radar Topographic Mission (SRTM) citation: Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org) |
max_srtm_relative_alt_5km_year1994 | number | maximum value within a radius of 5 km around station location with relative altitude of the following data of the year 1994: units: m data_source: NASA Shuttle Radar Topographic Mission (SRTM) citation: Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org) |
min_srtm_relative_alt_5km_year1994 | number | minimum value within a radius of 5 km around station location with relative altitude of the following data of the year 1994: units: m data_source: NASA Shuttle Radar Topographic Mission (SRTM) citation: Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org) |
htap_region_tier1_year2010 | string | value for the year 2010 of the following data: The 'tier1' region defined in the task force on hemispheric transport of air pollution (TFHTAP) coordinated model studies according to figure 4 of https://publications.jrc.ec.europa.eu/repository/bitstream/JRC102552/lbna28255enn.pdf (see controlled vocabulary: Station HTAP Region) |
dominant_landcover_year2012 | string | value for the year 2012 of the following data: units: - data_source: ESA 2017 and UCLouvain citation: ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (see controlled vocabulary: Station Landcover Type) |
dominant_ecoregion_year2017 | string | value for the year 2017 of the following data: units: - data_source: RESOLVE Biodiversity and Wildlife Solutions citation: Eric Dinerstein, David Olson, Anup Joshi, Carly Vynne, Neil D. Burgess, Eric Wikramanayake, Nathan Hahn, Suzanne Palminteri, Prashant Hedao, Reed Noss, Matt Hansen, Harvey Locke, Erle C Ellis, Benjamin Jones, Charles Victor Barber, Randy Hayes, Cyril Kormos, Vance Martin, Eileen Crist, Wes Sechrest, Lori Price, Jonathan E. M. Baillie, Don Weeden, Kieran Suckling, Crystal Davis, Nigel Sizer, Rebecca Moore, David Thau, Tanya Birch, Peter Potapov, Svetlana Turubanova, Alexandra Tyukavina, Nadia de Souza, Lilian Pintea, Jose C. Brito, Othman A. Llewellyn, Anthony G. Miller, Annette Patzelt, Shahina A. Ghazanfar, Jonathan Timberlake, Heinz Klöser, Yara Shennan-Farpon, Roeland Kindt, Jens-Peter Barnekow Lilleso, Paulo van Breugel, Lars Graudal, Maianna Voge, Khalaf F. Al-Shammari, Muhammad Saleem, An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm, BioScience, Volume 67, Issue 6, June 2017, Pages 534–545, https://doi.org/10.1093/biosci/bix014 (see controlled vocabulary: Station ECO Region Type) |
distance_to_major_road_year2020 | number | value for the year 2020 of the following data: version: 0.6 generator: Overpass API 0.7.57.2 48842a1b copyright: https://www.openstreetmap.org/copyright timestamp: 2022-04-22T17:10:56Z |
mean_nightlight_1km_year2013 | number | mean value within a radius of 1 km around station location of the following data of the year 2013: units: - data_source: NOAA National Centers for Environmental Information (NCEI) citation: Image and data processing by NOAA's National Geophysical Data Center. DMSP data collected by US Air Force Weather Agency |
mean_nightlight_5km_year2013 | number | mean value within a radius of 5 km around station location of the following data of the year 2013: units: - data_source: NOAA National Centers for Environmental Information (NCEI) citation: Image and data processing by NOAA's National Geophysical Data Center. DMSP data collected by US Air Force Weather Agency |
max_nightlight_25km_year2013 | number | maximum value within a radius of 5 km around station location of the following data of the year 2013: units: - data_source: NOAA National Centers for Environmental Information (NCEI) citation: Image and data processing by NOAA's National Geophysical Data Center. DMSP data collected by US Air Force Weather Agency |
max_nightlight_25km_year1992 | number | maximum value within a radius of 25 km around station location of the following data of the year 2013: units: - data_source: NOAA National Centers for Environmental Information (NCEI) citation: Image and data processing by NOAA's National Geophysical Data Center. DMSP data collected by US Air Force Weather Agency |
mean_population_density_250m_year2015 | number | mean value within a radius of 250 m around station location of the following data of the year 2015: units: 1/km^2 data_source: The European Commission, Joint Research Centre citation: Schiavina, Marcello; Freire, Sergio; MacManus, Kytt (2019): GHS-POP R2019A - GHS population grid multitemporal (1975-1990-2000-2015). European Commission, Joint Research Centre (JRC) [Dataset] doi:10.2905/0C6B9751-A71F-4062-830B-43C9F432370F PID: http://data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f |
mean_population_density_5km_year2015 | number | mean value within a radius of 5 km around station location of the following data of the year 2015: units: 1/km^2 data_source: The European Commission, Joint Research Centre citation: Schiavina, Marcello; Freire, Sergio; MacManus, Kytt (2019): GHS-POP R2019A - GHS population grid multitemporal (1975-1990-2000-2015). European Commission, Joint Research Centre (JRC) [Dataset] doi:10.2905/0C6B9751-A71F-4062-830B-43C9F432370F PID: http://data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f |
max_population_density_25km_year2015 | number | maximum value within a radius of 25 km around station location of the following data of the year 2015: units: 1/km^2 data_source: The European Commission, Joint Research Centre citation: Schiavina, Marcello; Freire, Sergio; MacManus, Kytt (2019): GHS-POP R2019A - GHS population grid multitemporal (1975-1990-2000-2015). European Commission, Joint Research Centre (JRC) [Dataset] doi:10.2905/0C6B9751-A71F-4062-830B-43C9F432370F PID: http://data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f |
mean_population_density_250m_year1990 | number | mean value within a radius of 250 m around station location of the following data of the year 1990: units: 1/km^2 data_source: The European Commission, Joint Research Centre citation: Schiavina, Marcello; Freire, Sergio; MacManus, Kytt (2019): GHS-POP R2019A - GHS population grid multitemporal (1975-1990-2000-2015). European Commission, Joint Research Centre (JRC) [Dataset] doi:10.2905/0C6B9751-A71F-4062-830B-43C9F432370F PID: http://data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f |
mean_population_density_5km_year1990 | number | mean value within a radius of 5 km around station location of the following data of the year 1990: units: 1/km^2 data_source: The European Commission, Joint Research Centre citation: Schiavina, Marcello; Freire, Sergio; MacManus, Kytt (2019): GHS-POP R2019A - GHS population grid multitemporal (1975-1990-2000-2015). European Commission, Joint Research Centre (JRC) [Dataset] doi:10.2905/0C6B9751-A71F-4062-830B-43C9F432370F PID: http://data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f |
max_population_density_25km_year1990 | number | maximum value within a radius of 25 km around station location of the following data of the year 1990: units: 1/km^2 data_source: The European Commission, Joint Research Centre citation: Schiavina, Marcello; Freire, Sergio; MacManus, Kytt (2019): GHS-POP R2019A - GHS population grid multitemporal (1975-1990-2000-2015). European Commission, Joint Research Centre (JRC) [Dataset] doi:10.2905/0C6B9751-A71F-4062-830B-43C9F432370F PID: http://data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f |
mean_nox_emissions_10km_year2015 | number | mean value within a radius of 10 km around station location of the following data of the year 2015: units: kg m-2 y-1 data_source: https://atmosphere.copernicus.eu/sites/default/files/2019-06/cams_emissions_general_document_apr2019_v7.pdf citation: Granier, C., S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, M. Gauss, M. Guevara, J.-P. Jalkanen, J. Kuenen, C. Liousse, B. Quack, D. Simpson, K. Sindelarova The Copernicus Atmosphere Monitoring Service global and regional emissions (April 2019 version) Report April 2019 version null 2019 Elguindi, Granier, Stavrakou, Darras et al. Analysis of recent anthropogenic surface emissions from bottom-up inventories and top-down estimates: are future emission scenarios valid for the recent past? Earth's Future null submitted 2020 |
mean_nox_emissions_10km_year2000 | number | mean value within a radius of 10 km around station location of the following data of the year 2000: units: kg m-2 y-1 data_source: https://atmosphere.copernicus.eu/sites/default/files/2019-06/cams_emissions_general_document_apr2019_v7.pdf citation: Granier, C., S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, M. Gauss, M. Guevara, J.-P. Jalkanen, J. Kuenen, C. Liousse, B. Quack, D. Simpson, K. Sindelarova The Copernicus Atmosphere Monitoring Service global and regional emissions (April 2019 version) Report April 2019 version null 2019 Elguindi, Granier, Stavrakou, Darras et al. Analysis of recent anthropogenic surface emissions from bottom-up inventories and top-down estimates: are future emission scenarios valid for the recent past? Earth's Future null submitted 2020 |
To get a list of all available stations use limit=None.
Response: Each query result, unless fields= is used, consists of all fields of station metadata.
If no no name is given, 10 stations will be returned (ordered by their internal id).
The second query format using a station id, works only with a given id.
Example: https://toar-data-testing.fz-juelich.de/api/v2/stationmeta/CPT134S00
Result:
[{“id”:2,”codes”:[“CPT134S00”],”name”:”Cape Point”,”coordinates”:{“lat”:-34.35,”lng”:18.48,”alt”:230.0},”coordinate_validation_status”:”not checked”,”country”:”South Africa”,”state”:”Western Cape”,”type_of_environment”:”background”,”type_of_area”:”rural”,”timezone”:”Africa/Johannesburg”,”additional_metadata”:{},”roles”:[],”annotations”:[],”aux_images”:[],”aux_docs”:[],”aux_urls”:[],”globalmeta”:{“population_density_year2010”:-1.0,”max_population_density_25km_year2010”:-1.0,”climatic_zone_year2016”:”warm temperate dry”,”nightlight_1km_year2013”:-999.0,”nightlight_5km_year2013”:-999.0,”max_nightlight_25km_year2013”:-999.0,”wheat_production_year2000”:-999.0,”rice_production_year2000”:-999.0,”edgar_htap_v2_nox_emissions_year2010”:-999.0,”omi_no2_column_years2011to2015”:-999.0,”htap_region_tier1”:”-1 (undefined)”,”etopo_alt”:-999.0,”etopo_min_alt_5km”:-999.0,”etopo_relative_alt”:-999.0,”dominant_landcover_year2012”:”-1 (undefined)”,”toar1_category”:”unknown”,”station_id”:2},”changelog”:[]}]
Example: https://toar-data.fz-juelich.de/api/v2/stationmeta/?bounding_box=49.2,7.0,50.1,8.1&limit=None
Result: (extremly shrinked: all metadata of stations that fall into the defined rectangle are returned!)
[{“id”:188,”codes”:[“DERP014”],”name”:”Hunsrück-Leisel”,
…
”changelog”:[{“datetime”:”2021-08-31T13:13:51.621321+00:00”,”description”:”station created”,”old_value”:””,”new_value”:””,”station_id”:3865,”author_id”:1,”type_of_change”:”created”},{“datetime”:”2022-02-04T22:07:40.557614+00:00”,”description”:”add climatic_zone_year2016 from geopeas service”,”old_value”:”{‘climatic_zone_year2016’: ‘Undefined’}”,”new_value”:”{‘climatic_zone_year2016’: ‘WarmTemperateDry’}”,”station_id”:3865,”author_id”:1,”type_of_change”:”single value correction in metadata”},{“datetime”:”2022-04-14T16:49:28.608142+00:00”,”description”:”add country from OSM nominatim (HIFIS instance)”,”old_value”:”{‘country’: ‘N/A’}”,”new_value”:”{‘country’: ‘DE’}”,”station_id”:3865,”author_id”:1,”type_of_change”:”single value correction in metadata”},{“datetime”:”2022-04-14T16:49:28.648002+00:00”,”description”:”add htap_tier1_region from GEO PEAS”,”old_value”:”{‘htap_region_tier1_year2010’: ‘HTAPTier1Undefined’}”,”new_value”:”{‘htap_region_tier1_year2010’: ‘HTAPTier1EUR’}”,”station_id”:3865,”author_id”:1,”type_of_change”:”single value correction in metadata”}]}]
https://toar-data-testing.fz-juelich.de/api/v2/timeseries/[?QUERY-OPTIONS]
where QUERY-OPTIONS are:
Name | Type | Description |
---|---|---|
limit | integer | count (default: 10) |
offset | integer | number of elements to be skipped (default: 0) |
fields | list of strings | only return the listed fields of each time series's record f.ex. fields=sampling_frequency,aggregation only returns the time series's sampling frequency and its aggregation |
id | integer | internally (in the database) used id of the time series |
label | string | a short string to distinguish this timeseries from others with the same combination of station and variable |
order | integer | indicates position of this timeseries in a list when several timeseries share the same station and variable combination |
sampling_frequency | string | Sampling frequency of data in this timeseries (see controlled vocabulary: Sampling Frequency) |
aggregation | string | Aggregation type in this timeseries (see controlled vocabulary: Aggregation Type) |
data_start_date | dateTime | Start date of the variable data available for this station |
data_end_date | dateTime | End date of the variable data available for this station |
data_origin | string | origin of data (model name or instrument) (see controlled vocabulary: Data Origin) |
data_origin_type | string | type of data origin (see controlled vocabulary: Data Origin Type) |
version | string | provider data version |
sampling_height | number | Height above the ground of the inlet/instrument/sampler (in m) |
station_id | integer | internal id of the station where the measurements take place |
variable_id | integer | internal id of the variable which is related to this time series |
To get a list of all available time series use limit=None.
Response: Each query result, unless fields= is used, consists of all fields of time series metadata.
If no QUERY-OPTIONS are given, 10 random time series will be returned.
Example: https://toar-data-testing.fz-juelich.de/api/v2/timeseries/?limit=1
Result:
[{“id”:25,”label”:””,”order”:1,”access_rights”:”by attribution”,”sampling_frequency”:”hourly”,”aggregation”:”mean”,”data_start_date”:”2009-01-01T00:00:00+00:00”,”data_end_date”:”2010-12-31T23:00:00+00:00”,”data_origin”:”ERA 5”,”data_origin_type”:”model”,”version”:””,”data_license_accepted”:”1900-01-01T00:00:00+00:00”,”sampling_height”:2.0,”additional_metadata”:{},”station”:{“id”:1021,”codes”:[“in_gad1379”],”name”:”Gadanki”,”coordinates”:{“lat”:13.45,”lng”:79.18,”alt”:360.0},”coordinate_validation_status”:”not checked”,”country”:”India”,”state”:”Andhra Pradesh”,”type_of_environment”:”background”,”type_of_area”:”rural”,”timezone”:”Asia/Kolkata”,”additional_metadata”:{}},”variable”:{“name”:”humidity”,”longname”:”atmospheric humidity”,”displayname”:”Humidity”,”cf_standardname”:”specific_humidity”,”units”:”g kg-1”,”chemical_formula”:””,”id”:32},”programme”:{“id”:0,”name”:”None”,”longname”:””,”homepage”:””,”description”:””},”roles”:[],”annotations”:[],”changelog”:[]}]
Example: https://toar-data-testing.fz-juelich.de/api/v2/timeseries/25/
Result:
[{“id”:25,”label”:””,”order”:1,”access_rights”:”by attribution”,”sampling_frequency”:”hourly”,”aggregation”:”mean”,”data_start_date”:”2009-01-01T00:00:00+00:00”,”data_end_date”:”2010-12-31T23:00:00+00:00”,”data_origin”:”ERA 5”,”data_origin_type”:”model”,”version”:””,”data_license_accepted”:”1900-01-01T00:00:00+00:00”,”sampling_height”:2.0,”additional_metadata”:{},”station”:{“id”:1021,”codes”:[“in_gad1379”],”name”:”Gadanki”,”coordinates”:{“lat”:13.45,”lng”:79.18,”alt”:360.0},”coordinate_validation_status”:”not checked”,”country”:”India”,”state”:”Andhra Pradesh”,”type_of_environment”:”background”,”type_of_area”:”rural”,”timezone”:”Asia/Kolkata”,”additional_metadata”:{}},”variable”:{“name”:”humidity”,”longname”:”atmospheric humidity”,”displayname”:”Humidity”,”cf_standardname”:”specific_humidity”,”units”:”g kg-1”,”chemical_formula”:””,”id”:32},”programme”:{“id”:0,”name”:”None”,”longname”:””,”homepage”:””,”description”:””},”roles”:[],”annotations”:[],”changelog”:[]}]
This endpoint enables queries that filter for a combination of metadata of stations and timeseries.
Any combination of query options (except for id) from both 2.4 Stationmeta and 2.5 Timeseries is possible here.
Response: Each query result, unless fields= is used, consists of all fields of time series metadata.
If no QUERY-OPTIONS are given, 10 random time series will be returned.
Example from the TOAR Quick Start Guide:
https://toar-data.fz-juelich.de/api/v2/search/?bounding_box=49,7,50,8&variable_id=5,4&limit=None
The above command will get you all the time series within an area between 49°N 7°E and 50°N 8°E that record ozone or pm1.
https://toar-data-testing.fz-juelich.de/api/v2/data/timeseries/[id][?QUERY-OPTIONS]
or
https://toar-data-testing.fz-juelich.de/api/v2/data/timeseries/id/[id][?QUERY-OPTIONS]
where QUERY-OPTIONS are:
limit= <integer: count> (default: 10; if using format=csv, the limit option will be ignored)
format =
Response: Each record of the query result consists of the fields datetime, value, flags, timeseries_id, version.
If no QUERY-OPTIONS are given, 10 random data entries will be returned.
Example: https://toar-data-testing.fz-juelich.de/api/v2/data/timeseries/52
Result:
[{“datetime”:”2009-01-01T00:00:00+00:00”,”value”:0.0,”flags”:”OK validated verified”,”timeseries_id”:52,”version”:”000001.000000.00000000000000”},{“datetime”:”2009-01-01T01:00:00+00:00”,”value”:0.0,”flags”:”OK validated verified”,”timeseries_id”:52,”version”:”000001.000000.00000000000000”},…,{“datetime”:”2010-12-31T21:00:00+00:00”,”value”:0.0,”flags”:”OK validated verified”,”timeseries_id”:52,”version”:”000001.000000.00000000000000”},{“datetime”:”2010-12-31T22:00:00+00:00”,”value”:0.0,”flags”:”OK validated verified”,”timeseries_id”:52,”version”:”000001.000000.00000000000000”},{“datetime”:”2010-12-31T23:00:00+00:00”,”value”:0.0,”flags”:”OK validated verified”,”timeseries_id”:52,”version”:”000001.000000.00000000000000”}]
Example: https://toar-data-testing.fz-juelich.de/api/v2/data/timeseries/52?format=csv
Result:A file containing the comma separated values of the requested time series
https://toar-data-testing.fz-juelich.de/api/v2/contacts/
https://toar-data-testing.fz-juelich.de/api/v2/contacts/id/[id]
https://toar-data-testing.fz-juelich.de/api/v2/contacts/persons/[name]
https://toar-data-testing.fz-juelich.de/api/v2/contacts/persons/id/[id]
https://toar-data-testing.fz-juelich.de/api/v2/contacts/organisations/[name]
https://toar-data-testing.fz-juelich.de/api/v2/contacts/organisations/id/[id]
https://toar-data-testing.fz-juelich.de/api/v2/geopeas_urls/
This shows how we use the geopeas services to enriche our stations metadata.
https://toar-data-testing.fz-juelich.de/api/v2/database_statistics/[name]
If no name is given, the complete database statistics is returned.
Valid names are:
users
stations
time-series
data records
Example: https://toar-data-testing.fz-juelich.de/api/v2/database_statistics/
Result:
{“users”:0,”stations”:13752,”time-series”:24891,”data records”:768839744}
The following python code provides a recipe how data can be obtained from the TOAR database through the REST services described above. In this example, the received data is splitted into its metadata and data part.
"""
toar_rest_demo: demonstrate use the REST interface to TOAR database v2 from python
@author: s.schroeder, Forschungszentrum Juelich GmbH, Germany (s.schroeder@fz-juelich.de)
@date: 2022-02-07
"""
from io import StringIO
import json
import pandas as pd
import requests
TOAR_SERVICE_URL="https://toar-data.fz-juelich.de/api/v2/"
# get data from the REST service
flags = None
timeseries_id=21
if flags:
result=requests.get(TOAR_SERVICE_URL+f'data/timeseries/{timeseries_id}?flags={flags}&format=csv')
else:
result=requests.get(TOAR_SERVICE_URL+f'data/timeseries/{timeseries_id}?format=csv')
timeseries_meta = json.loads("\n".join([line[1:] for line in result.text.split('\n') if line.startswith('#')]))
df = pd.read_csv(StringIO(result.text), comment='#', header=1, sep=',',names=["time","value","flags","version","timeseries_id"],parse_dates=["time"],index_col="time",date_parser=lambda x:pd.to_datetime(x,utc=True),infer_datetime_format=True)
# print, what I got
print(f"metadata: {timeseries_meta}")
print(f"data: {df}")
# example of how to access metadata
stationmeta=timeseries_meta["station"]
variable=timeseries_meta["variable"]
data_start_date = min(df.index).strftime("%Y-%m-%d %H:%M:%S+00")
data_end_date = min(df.index).strftime("%Y-%m-%d %H:%M:%S+00")
# show stationmeta data
print(f'retrieved data from station {stationmeta["name"]} for variable {variable["name"]} with timerange {data_start_date} - {data_end_date}')
print(f'station coordinates: {stationmeta["coordinates"]}')